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oxides.13 This approach can also explain the conversion14 of 
Z allylic derivatives into olefins with predominant E config
uration by a displacement with LiCuMe2. The nature of the 
leaving group should be decisive in determining which mech
anism will be operative: ion pairs should be easily formed from 
common allylic esters compared with the corresponding lithium 
carbamates in the presence of copper reagents acting as Lewis 
acids.15 

This hypothesis is now under investigation, while evaluation 
of the scope and limits of the carbamate method is continuing 
in the case of substituted, noncyclic allylic substrates. 
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Infrared Photochemistry of a Volatile 
Uranium Compound with 10-ju Absorption 

Sir: 

It has recently been demonstrated that efficient separation 
of isotopic species can be achieved by selective, laser-induced 
multiphoton vibrational excitation of polyatomic molecules.' '2 

Examples of separations reported to date include isotopes of 
hydrogen,3 boron,4 carbon,4b silicon,4b sulfur,5 chlorine,6 se
lenium,7 molybdenum,8 and osmium.9 The key molecular re
quirements for such a process are volatility and the existence 
of an infrared-active normal vibrational mode (fundamental, 
overtone,613'8 or combination613'8) which exhibits a nonzero 
isotopic shift. The molecular infrared absorption is brought 
into coincidence or near coincidence in the gas phase with an 
intense (~107-109 W/cm2) infrared laser source, resulting in 
isotopically selective decomposition or reaction. To date, most 
laser-induced isotope separation (LIS) experiments have been 
performed with pulsed, discretely tunable CO2 infrared gas 
lasers. These devices have a usable output in the 10-/U region 
(9.2-10.8 ix) and are by far the most powerful, reliable, 
monochromatic, and economical sources of mid-infrared laser 
radiation presently available. 

Table I. Irradiation Experiments with U(OCHa)6 

laser frequency, enrichment factor 
expt laser line cm-1 passes (in 235U)" 
1 
2 
3 
4 
5 
6 
7 
8 
9 

P(24) 
P(32) 
P(36) 
P(38) 
P(38) 
P(38) 
P(38) 
P(38) 
P(40) 

940.56 
933.01 
929.02 
927.04 
927.04 
927.04 
927.04 
927.04 
924.98 

0.9975 (22) 
1.0000(20) 
1.0053(17) 
1.0315(46) 
1.0171 (26) 
1.0237(27) 
1.0183(26)' 
1.0258(30)* 
1.0108(27) 

" Enrichment factor = (235L7238U)fimll/(
235U/238U)ini,iai; quan

tities in parenthesis are standard deviations. b Experiments with 
sample enriched (1.5%) in 235U. 

In principle, multiphoton infrared photochemistry would 
appear to be an ideal technique for the technologically im
portant separation of uranium isotopes 235U (0.72% natural 
abundance) and 238U (99.27% natural abundance);10 however, 
exhaustive spectral studies on the seemingly most attractive 
molecular candidate, UF6, show it to lack significant absorp
tion in the CO2 laser region.11 While the eventual development 
of powerful 16-M lasers'015'12 or other techniques using UF6 may 
be possible, an attractive alternative approach would be the 
"tailoring" of uranium compounds for the CO2 laser.13 In this 
communication we report initial spectral and photochemical 
observations on a prototype molecule, U(OCH3)6. Among our 
results we note that it has proven possible, for the first time, 
to achieve uranium isotope separation by 10-ju infrared irra
diation of a uranium-containing metal-organic molecule. 

Uranium hexamethoxide, U(OCH3)6, was prepared by a 
modification of the original Gilman procedure14 in which 
U(OCH3)6

-2 is oxidized in a single step,130-15" or directly from 
UFg utilizing a procedure which will be discussed elsewhere.1513 

The compound readily sublimes (with minor decomposition) 
at 30 0C (10 -5 mm) to form dark red, extremely moisture-
sensitive crystals. Although U(OCH3)6 is less volatile than UFg 
(room temperature vapor pressure «10 - 3 16 vs. 120 Torr17), 
LIS, unlike gaseous diffusion, does not require high volatility, 
and operation at high pressures can actually decrease isotopic 
selectivity through intermolecular energy transfer.1 Unlike 
UF6, U(OCF^)6 does not attack glass.18 The hexamethoxide 
is monomeric in benzene by cryoscopy and displays a singlet 
in the 1H NMR (C6D6) at h 7.66. Preliminary single-crystal 
X-ray diffraction results indicate discrete monomers with an 
octahedral UO6 framework, A.19 The vibrational spectra of 
U(OCFb)6 are in accord with this configuration; they can be 
assigned by analogy to UF6

11 and by 18OCH3 substitution. 

CH3 

O 
CH3O \ ^ O C H 3 

CH 3O^ I VOCH3 

O 
CH3 

A_ 

Thus, the infrared spectrum (Nujol solution) of U(OCH3)6 
exhibits a strong band at 464.8 cm-1 which, upon substitution 
of ~30% 18OCH3,20'21 appears as a multiplet centered at 
~15-18 cm"' to lower frequency. The 464.8-cm_' transition 
is assigned to a v\j-o, Ti u (»3) stretching mode.22'23 The Raman 
spectrum of U(OCH3)6 (e0 = 6471 A Kr+, spinning poly-
crystalline sample at -33 0C) exhibits low frequency transi
tions at 495.5 (s) and 400.6 (m) cm -1, which are assigned to 
the Raman-active A]g (v\) and E8 (v2) U-O stretching modes, 
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respectively.11 No significant OCH3 vibrations are expected 
in this region.16a'22-23 The infrared spectra of UF6lld and other 
metal hexafluorides24 exhibit relatively intense v\ + e3 and vi 
+ vi combination bands. By analogy, we tentatively assign 
weak U(OCH3)6 infrared transitions at 931 and ~860 cm -1 

to v\ + v-i and vi + ^3, respectively. The infrared spectrum of 
U(OCH3)6 also exhibits a strong band at 1051 cm"1 which is 
assigned to a normal mode with predominant C-O stretch
ing22,23 character. This band shifts 18 cm -1 upon 18O substi
tution. From product rule and first-order perturbation theory 
considerations25 or by analogy to UF6,1 ld the 235TJ_238JJ shift 
of the T]U U-O stretch is anticipated to be on the order of 
0.5-1.0 cm-1. 

The apparatus for irradiating U(OCH3)6 consisted of a 
Rogowski profile CO2 TEA laser operating on a number of the 
P branch lines of the 00° 1-10° 0 laser transition. The output 
varied from 1.7 to 0.90 J/pulse26 depending on the particular 
line. A pulse repetition rate of 1 Hz was employed, and typical 
pulse widths were 80-ns fwhm with a low intensity (~30% of 
total) 500-ns tail. The sample was irradiated with an unfocused 
beam in a 42-cm glass cell fitted with a KCl or KBr front 
window, and an aluminum-coated flat at the rear for double 
passing the laser beam. Two sample compartments were at
tached to the cell, and during irradiation the sample was al
lowed to pass between them (and through the laser beam) by 
cooling one compartment with liquid nitrogen. The irradiated 
product was analyzed mass spectrometrically using a Hew
lett-Packard 5930A instrument interfaced to a data system for 
signal averaging and isotopic analysis.27 Spectra for isotopic 
analysis were typically the result of 10 000-25 000 summed 
scans (50 000-125 000 data points) and were calibrated with 
nonirradiated standards, run immediately prior to and after 
the irradiated sample. Isotopic analyses were rejected if the 
two standards did not agree within 0.002%. The data (Table 
I) show that irradiation with the P(38) laser line, which is 
slightly to the red of the 931-cm-1 transition, results in en
richment of the sample in 235U.28 Use of enriched (1.5% 235U) 
uranium (expt 7 and 8) shows similar enrichment factors but 
an increased absolute enrichment, as expected for isotopically 
specific chemistry. The average enrichment factor for expt 4-8 
is 1.023 (3).29 For comparison with these results, a single pass 
through a typical gaseous diffusion cell results in an enrichment 
factor of ~ 1.002.10b Thus, this rather simple LIS experiment 
has resulted in an average enrichment factor which is ap
proximately ten times greater than for gaseous diffusion. 

The results of the experiments described in this communi
cation are the first reported indication of uranium isotope 
separation by infrared laser irradiation of a uranium-con
taining molecule. Clearly the simple apparatus employed is not 
suited for maximum enrichment, nor optimization of this 
procedure. Experiments with multiple-reflection cells, super
sonic expansion nozzles, multiple lasers, and chemical scav
engers are obvious extensions of this work. Such efforts are now 
in progress as are those to elucidate the mechanistic aspects 
of the photochemistry. 
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